4+(w^2)+4(w^2/2)=108

Simple and best practice solution for 4+(w^2)+4(w^2/2)=108 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4+(w^2)+4(w^2/2)=108 equation:



4+(w^2)+4(w^2/2)=108
We move all terms to the left:
4+(w^2)+4(w^2/2)-(108)=0
We add all the numbers together, and all the variables
w^2+4(w^2/2)-104=0
We multiply parentheses
w^2+4w^2-104=0
We add all the numbers together, and all the variables
5w^2-104=0
a = 5; b = 0; c = -104;
Δ = b2-4ac
Δ = 02-4·5·(-104)
Δ = 2080
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2080}=\sqrt{16*130}=\sqrt{16}*\sqrt{130}=4\sqrt{130}$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{130}}{2*5}=\frac{0-4\sqrt{130}}{10} =-\frac{4\sqrt{130}}{10} =-\frac{2\sqrt{130}}{5} $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{130}}{2*5}=\frac{0+4\sqrt{130}}{10} =\frac{4\sqrt{130}}{10} =\frac{2\sqrt{130}}{5} $

See similar equations:

| 5(3x+-2)=35 | | 4-2n=5+-n+1 | | .75(8n-4)=-2 | | t+9t=60 | | -13+3z=5(6z-3)+2 | | 6x+4(3x+5)=x | | (9)/(2)+(5)/(2)y=2y-4 | | 2(x+-1)+-x=-2 | | (5/24)+(1/6a)=(1/4a) | | -13.205.607p^2=-66.707.837.771,1687p | | 3(3n+4)=7(4n+8)+3 | | 20+-5y=45 | | 1/2x+3/4-3/4=1/2x+3/4-3/4 | | 5x-1+6x=2x+5-4x | | 4.9t^2-15t+7=0 | | 356n=485+n+35 | | x+(3x+2)=18 | | x+5.5=0.45 | | 12+-3(x+-5)=21 | | 6=3w-4 | | 24=6(-6n-5) | | (y=2)(y-8) | | 4p-3=-9+p | | 5p/2=15/2 | | 2x=3x+50 | | 6x+-4(2x+8)=16 | | -5/2y=-10 | | 2=k+7/3 | | 4p^2=2p | | y/3-10=26 | | R1=r2/r1+r2 | | 4x+3=17x=16 |

Equations solver categories